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The analysis of random graphs developed by the author, principally as a model 
for polymerization processes, is extended to the case of directed random graphs, 
with models of neural nets in mind. The principal novelty of the directed case 
is the representation of the partition function by a complex rather than a real 
integral, and the replacement of simple maxima in asymptotic evaluations by an 
interesting form of saddle point. 
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1. I N T R O D U C T I O N  

The study of random graphs can be said to have been pursued by two 
fairly distinct schools: one constituted by those working with physical 
models (notably of polymerization) and the other constituted by the pure 
graph theorists. Accounts of the work of these two schools up to about 
1985 are effectively summarized in Whittle ~~ and Bollob~s, ~1) respectively. 

Both approaches have been concerned almost entirely with undirected 
graphs. The principal exception to this assertion would have been the study 
of polymers constructed of several types of unit, when a bond between 
units of different type (i.e., 'an arc between nodes of different color) is 
intrinsically asymmetric. 

However, there is a need to study the directed case. Random graphs 
with field variables defined at the nodes are being increasingly used as 
models for neural networks, and realism requires that the dynamics of this 
field be directed and irreversible. ~2-7'1~) A general theory for such models is 
still lacking, but a first step is certainly the study of random directed 
graphs. 
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The model considered by Whittle (see ref. 10 and papers quoted there) 
may seem to be a directed formulation, in that a graph ("configuration") 
cg on N given nodes is specified by cg = {Sab; a, b = 1, 2,..., N}, where Sab is 
the number of arcs directed from node a to node b. The equilibrium 
distribution deduced for this configuration on statistical mechanical 
grounds is 

( PN(~) oC Q N ( ~ ) =  l-[ S~b!J e-e(~e)/r ( i )  
a,b 

where E(cg) is the potential energy associated with configuration cg and T 
is a normalized temperature. The quantity h is inversely proportional to 
"volume" V 

1 
h = - -  (2) 

2~:V 

Distance and dimensionality do not enter into this model, but volume can 
be regarded as an "extension" parameter, significant in that the essential 
results emerge in the thermodynamic limit, when N and V tend to infinity 
in constant ratio 

p = N / V  

We can thus regard p as the "density" of nodes. 
Distribution (1) is just a Gibbs distribution, obeying a detailed 

balance condition if the rates 2, 4' for the transitions Sab --~ Sab + 1 are in 
the ratio 

2 (2KV) - le_ ,~e / r  
2' - Sab + 1 

where A E  is the increment in potential energy under the transition 
Sab--*Sab + 1. This ratio is plausible: the V -1 term represents the fact that 
the association rate between two given nodes will decrease as V 1 with 
increasing V, and the Sab + 1 term represents an assumption that all of the 
sa~ + 1 ab-bonds are equally likely to break. The factor ~: could be incor- 
porated in AE, but is useful to retain separately. 

In the so-called "first-shell" model distribution (1) is specialized to 

a, b 

(3) 
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where Nj is the number of nodes of degree j (that is, nodes at which j arcs 
meet, or units which have formed j bonds; j =  0, 1, 2,...). Further, 

B = �89 ~ jNj (4) 
J 

is the number of bonds, and C is the number of components in the graph 
(polymers in the mix). We can regard - T l o g  H i as the potential energy 
associated with a j -bond unit: it is the fact that E is largely made up of 
these contributions which constitutes the "first-shell" assumption. The term 
in v in (3) represents a difference in interpolymer and intrapolymer bond 
function rates. If a new bond is formed, this term contributes - T  log v to 
AE if the new bond is within an existing polymer (graph component), but 
contributes nothing if the bond links two previously separate polymers. So, 
if v = 1, then inter- and intrapolymer association rates are equal; if v = 0, 
then the polymers are constrained to be trees. 

Distribution (3) is a consequence of a reversible Markov model, but 
such an immediate one that we may as well regard prescription of (3) as 
the model itself. The model may seem to allow directional effects, in that 
it distinguishes between Sab and Sba. Such a distinction is mathematically 
natural, but the fact that distribution (3) is invariant under permutation of 
Sab and sba implies that the model exhibits no real directional effect. 

To achieve a truly directed specification, let us say that a node has 
degree (j, k) if it has j outgoing arcs and k incoming arcs, and let Njk be 
the (random) number of such nodes. We shall then modify model (3) to 

e N( c~ ) oc O N( C~ ) = (o~b hS~b \ / (5) 

We continue to use the notation H, but Hj and Hjk are of course com- 
pletely different quantities. The directed model (5) would reduce to the 
undirected model (3) in the case 

Hjk=Hj+k (6) 

Analysis of the directed case can be seen both as a useful extension of 
the polymerization model and as a preparatory study for the analysis of 
neural nets. 

2. S U M M A R Y  OF RESULTS FOR THE UNDIRECTED CASE 

It is helpful to begin by summarizing the results for the undirected 
case, which we hope to generalize to the directed case. Corresponding 

822/56/3-4-17 
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theorems (quoted) for the undirected case and (proved) for the directed 
case will be denoted U and D. So, Theorems U1 and D1 are correspond- 
ing. The assertions of this section will refer to the undirected case alone. 

The quantity 

QN= ~ Qu(C~) (7) 
c~ 

is the partition function of the model. It can also be viewed as the unnor- 
malized probability generating function (p.g.f.) of the random variables Nj, 
with the quantities /-/1. serving both as parameters of the model and as 
marker variables for the Nj in the p.g.f. 

Define the function 

H(~)= ~ Hj~/ 
/=o J! (8) 

T h e o r e m  01 .  Suppose log H(~) of less than quadratic growth at 
infinity. Then for model (1) with v--1 the partition function Q N has the 
evaluation 

QN = 2~ J_~ H ( ~ ) N  e Kv&2 d~ (9) 

The growth condition on log H(~) is imposed in order to make 
integral (9) convergent for all positive N, V. We shall assume this satisfied 
in the sequel. 

Evaluation (9) determines node statistics, at least in the case v = 1. For 
example, by extracting the term in I-Ij H us we obtain the distribution of 
N. = {No, N1, N2 .... } as 

P(N.) < B -  ! - ~  N/---~. \ j !  / [ 

where ( B -  1/2)! = F(B + 1/2). 
However, evaluation (9) also determines the statistics of the graph 

components (the polymer molecules) for any v. The natural level of descrip- 
tion of a component for model (1) is r =  { r j ; j = 0 ,  1, 2,...}, where rj is the 
number of nodes in the component of degree j (i.e., the number of units in 
the polymer which have formed exactly j bonds). Let us term such a com- 
ponent (polymer) an r-mer; it will contain 

R=~rj 
J 
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nodes and 

1 L=~Zjr j 
J 

arcs. Let n r be the number of r-mers, so that necessarily 

~, Rnr=N (11) 
r 

T h e o r e m  U2. Suppose that 1og[Zu=0 (QN/N!)] has the formal 
expansion ~2r ~'r in powers of the Hi, where Q;v has the evaluation (9) valid 
for v = 1 and 7, is the term in ]-[jH;J. Then the nr are distributed as 
independent Poisson variables with respective expectations yrv L-R+ ' ,  
conditioned by the constraint (11). 

The integrand in (9) can be written e VJ, where 

J(~) = p log H(~) - ~c~2/2 (12) 

The value ( of ~ maximizing J(~) largely characterizes behavior in the 
thermodynamic limit, in that if we define 

I(~b) = f (~(~) eVS(r (13) 

then evidently we have the following result. 

Theorem U3. For sufficiently regular ~b 

I(@)oc~(() (14) 

in the thermodynamic limit, where the constant of proportionality is 
independent of ~b. 

A sufficient regularity condition would, for example, be that ~b be con- 
tinuous and integral (13) exist for sufficiently large V. 

Since E(Nj) oc I(Hj~J/j! H(~)), an immediate corollary of this result is 
the following. 

Theorem U4. Suppose v = 1. Then in the thermodynamic limit 

Hi& E(Nj) oc j-~. (15) 

Expression (15) when normalized determines pj, the distribution of the 
degree j of a randomly chosen node. 
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There is then the important question of criticality. Below a critical 
value Pc of p the components are mostly small; for p > Pc most nodes lie 
in a single "giant component." In polymerization terms, there are the two 
regimes of the sol state and the gel state. The regime at the critical density 
Pc may be sol or gel or transitional; see the comments at the end of 
Section 6. 

The best way to test which regime prevails is to test for the breaking 
of replica symmetry: for whether matter in communicating replicas of the 
model tends to equidistribute itself statistically between replicas or to 
concentrate in some single replica. The assumption that two replicas 
communicate would be expressed by saying that the configurations Call, r 
in the two replicas would have joint distribution 

P(Cg 1 , cd2) ~: QMI(~) QM~(Cd2) (M 1 + M 2 = 2N) 

where QN((~) is given by expression (3), M i is the number of nodes (units) 
in replica i, and the condition M~ + M2 = 2N is the only constraint upon 
the distribution. Integrating this joint distribution over configurations Zi 
and permutations of nodes for given M1, M2, we deduce the distribution 
of M1, M2 to be 

QMIQM2 
P(M~, M2) ~: (M~ + M2 = 2N) 

M1 ! M2 ! 

One will be in the subcritical regime if matter equidistributes itself between 
the two regimes, i.e., if P ( N + n ,  N - n )  is maximal at n = 0 .  It is shown in 
ref. 10, Chapter 15, that this is equivalent to requiring that 

[H(~I) + H(~2)]2N e-~V(r r 

should be maximal at ~t = 42 (the common maximizing value necessarily 
being (), and that this is in turn equivalent to the condition that in the 
representation 

J( r ) = n~n I O H( r ) - x~2T - p- log 0J (16) 

of J the square bracket should possess a saddle point [min-max in (0, 3)]. 
Otherwise expressed, let ~(0) be the value of ~ maximizing the square 

bracket in (16), with p expressed parametrically in terms of 0 by 
p = OH(((O)). As 0 (and so p) increases from zero, a point is reached at 
which ~ ( 0 ) ~ 0  becomes infinite; this point marks criticality. This charac- 
terization leads to following the conclusion. 



The Statistics of Random Directed Graphs 505 

Theorem U5. Suppose v = 1 and consider p increasing from zero. 
Then the regime is subcritical exactly so long as 

632H ~ H < 0  
4 042 04 (17) 

where 4 has the value (maximizing J(4). 

This criterion in fact locates the critical point for all values of v, but 
as v increases, the sol solution becomes metastable rather than uncondi- 
tionally stable for values of p less than Pc (ref. 10, p. 346). 

In virtue of Theorem U4, we can rephrase the criticality condition 
immediately in terms of degree statistics. 

Theorem U6. The regime is subcritical exactly so long as 

or, equivalently, 

E ( j ( j -  1 )) < E(j) (18) 

E * ( j -  1)< 1 (19) 

where E, E* are expectations based upon the distributions & and p* w_ jpj, 
respectively. 

Relation (19) states that, if one considers the nodes at the ends of a 
randomly chosen arc, then the expected numbers of further nodes to which 
each of these nodes is connected is less than unity. This is related to the 
branching process view of a random graph: the total progeny of an 
ancestor will be finite with probability one iff the expected number of his 
sons is less than unity. 

3. THE EVALUATION OF THE PARTIT ION FUNCTION 

From now on we shall consider the directed case, based on (5) rather 
than on (1). In this case the partition function QN is effectively the unnor- 
malised p.g.f, of the variables NjK, and we seek an evaluation analogous to 
(9). Corresponding to (8), let us define the double generating function 

j k 
4142 (20) H(41'42)=2j2kHjkj, k, 

T h e o r e m  D1. Suppose log H(~I, 42) of less than quadratic growth 
at infinity. Then for model (5) with v = 1, the partition function ON has the 
evaluation 

QN-- r~ JJ_ooH(ttl +iq2'tll-iqz)Uexp[--2tcV(tl 2 (21) 
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ProoL Suppose that Hjk has the formal integral representation 

Hjk = ;/x@ k m(dx, dy) (22) 

so that 

H(~I, ~2) = f f  exp(x~l + Yr m(dx, dy) 

We see from (5), (22) that QN c a n  be written 

(hXa Yb)'~ 1-[ f ... f I2 SST. "j . :  m(dxa' dYa) 

. . . .  exp 2 Xa 2 ~a dya) 

Consider now the identity 

ehZls2=l ;f exp[ Sl(qt + ith) + S2(ql - i th)-  (~12 + t12)/h ] dth dq2 (24) 

Making this substitution under the integral in (23) with the identifications 
~1 = ~, Xa, ~2 = ~.. Ya, and h = (2~:V) -~, we deduce the asserted expression 
(21) for QN. | 

We know that the directed specification reduces to the undirected one 
if (6) holds, i.e., if 

H(~I, ~2)=H(~1 + ~2) 

In this case it follows routinely that expression (21) reduces to (9). 
The analogue of Eq. (10) is important enough to be stated as a 

theorem. Let us define the vector random variable N..={Njk;j,k= 
0, 1, 2,... } and the quantities 

B1 = 2 E jNjk (25) 
j k 

R2 = Z Z kNjk (26) 
j k 

H+k (27) 
AJk = j ! k! 
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Theorem D2. The vector N..= {Njk} has the distribution 

P(N..) oc ~ Ij~, k 

this being confined to nonnegative integers Njk such that 

Z Njk = N (29) 
j k 

~ (j -- k) Njk = 0 (30) 
j k 

The quantity B is the common value of B1 and B2. 

Proof. P(N..) is proportional to the term in l-[j,k HiU[1 k in the expan- 
sion of expression (18) in powers of the Hj~, and so to 

A Ujk 

j,k Njk! 
where 

I = f j ' ~  (ql +ith) ~1 (th- iI/2)B2 expE--2~V(t/2 + ~/~2)] dql dq2 

A transformation to polar coordinates shows that 

{ B '  (2KV) B1 (Bt =B2) 
I OC 1" (B1 # B2) 

whence expression (28) and condition (30) follow. | 

Condition (29) simply expresses the fact that there are N nodes in 
total. Condition (30) expresses the fact that the total number of outgoing 
and incoming arcs must be equal. This is a fundamental assertion, for all 
its obviousness, and it is interesting that this assertion should follow from 
the general form of the integral (21). 

A node now has the double degree (j, k), where j and k are, respec- 
tively, the numbers of outgoing and incoming arcs. The natural level of 
description of a component (polymer) for model (5) is r =  {rjk;j, k= 
0, 1, 2',...}, where rjk is the number of nodes of degree (j, k) it contains. 
There are no new features in the deduction of polymer statistics from the 
evaluation of QN; the only differences are the obvious points of definition. 

T h e o r e m  D3. As for Theorem U2, except that r, R, and L have 
the revised definitions r={rjk}, R=~jZ~rjk, and L=~jZkjrjk= 
Zj Zk krjk. 
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4. A S Y M P T O T I C S  OF THE T H E R M O D Y N A M I C  LIMIT 

The integral (21) is of the form QN oC ~eVSdt/, where J now has the 
definition 

J(41, 42 )=P  log H(41, 42)-- 2~cr r (31) / 

[-see the undirected version (12)]. Note that J occurs in the integral with 
complex arguments: J(t/1 + #/2,/11- it/2). One wonders now if there is a 
value ~=  ((1, (2) which is dominating in the thermodynamic limit in that, 
if we define 

I ( ~ )  = I (~ (~1 ,  ~2)) = f ~(t/1 "~- it/z, t/1 - it/2) eVS dt/ (32)  

then 

I(~b) oc ~b(~l, ~2) (33) 

in the thermodynamic limit (see Theorem U3). We shall find this to be the 
case, with ( =  ((1, (2) having the real saddle-point characterization stated 
below in Theorems D4 and D4'. We regard Theorem D4 as preparatory, in 
that it provides a constructive path to the asymptotic results. Once one 
knows where the path leads, conclusions can easily be strengthened; cf. 
Theorem D4'. 

T h e o r e m  D4. Suppose Hjk zero for j , k  greater than some 
prescribed finite value. The most probable value of N.. = {Njk} in the ther- 
modynamic limit is given by 

- j  -k ?Tjk oc Ajkr (34) 

where ((1, (2) is the real value of (41, ~2) maximizing J(~l,  42) with respect 
to  ~1~2 and minimizing it with respect to r 

Proof. In the more probable part of distribution (28) the Njk will all 
be of order N, and Njk! can be approximated by Stirling's formula. As far 
as the term in B is concerned, this is equivalent to making the substitution 

B! ~ max e -  2~vu2u2B 
(2~cV) B v 

= max e _2~cVU2uB l r r  + B2 
U 
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The maximization of log P(N..) with respect to the Njk is then equivalent 
to maximization of the Lagrangian form 

N log N -  N + ~ ~ Njk [log(Ajk/Njk) -- 1 ] -- 2~: VU 2 
j k 

+ ( B I +  B2)log U + 2 ( N -  ~ ~ Njk ) + / z ( B I  --  B2) (35) 
J 

with respect to N.. and U. Here 2, # are Lagrangian multipliers associated 
with the constraints (29), (30) and B1, B2 have the definitions (25), (26). 
The value of Nik maximizing (35) is 

Njk = Ajk e-~ +~(j-k)Uj+e (36) 

This substitution leaves a reduced Lagrangian form 

5~ = Nlog N -  N -  2tcVU 2 + 2N+ e-;'H(Ue ~, Ue ~) 

to be maximized with respect to U and minimized with respect to 2, # 
(since the multipliers 2, # are the dual variables of a convex programming 
problem). Minimization with respect to 2 yields 

2 = log H/N 

and the further reduced Lagrangian form 

L~"= Nlog H(Ue u, Ue-") -- 2tcVU 2 

= VJ(r ~2) (37) 

if we define 

31 = UC'u, ~2 = U e - ~  

Expression (37) is to be maximized with respect to U 2 = ~ r  and mini- 
mized with respect to 2 log/t = ~1/~2. Expression (36) and these determina- 
tions of U and/z imply the assertion of the theorem. | 

The proportionality constant in (36) is to be chosen so that P7 
satisfies condition (29). Condition (30) should be satisfied by construction. 
However, a direct verification takes us over some useful ground. The saddle 
point (~1, (2) will be located by the stationarity conditions 

0 0H 2~c~2, 0 c~H ~1  = ~ 2  = 2K~1 (38) 
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Here 
O = p / H  (39) 

and arguments (41, 42) are understood throughout. On the other hand, in 
virtue of (34) (with proportionality constant e-X), we have 

~H 
/~1 = e - ;~t  ~ = 2Ke-X41 42 

and the same evaluation for B2. 

T h e o r e m  D4'. Supose log H(~I, ~2) of less than quadratic growth 
at infinity. Then relation (33) holds for sufficiently regular r in the 
thermodynamic limit, with (4t, ~2) being the real value of (~1, 42) that 
maximizes d(~l, ~2) with respect to ~1~2 and minimizes it with respect 
to ~dG. 

ProoL In integral (32) let us change variables from (r h,  r/2) to the 
polar form (U, r  or to (U, z), where 

01 ~- iq2 = Ue +-iO = U z +-I 

We then have 
dvdz 

I(q)) oc ()(Uz, U z - I ) H ( U z ,  Uz 1)N e--2~'VU2 (40) 
z 

where the z integration is around the umt circle. Consider the z integral for 
fixed U. The z contour can be deformed until it passes through a saddle 
point of the function H(Uz, Uz-~) of z. But this function is a power series 
in z with powers of both signs, but nonnegative coefficients. The dominant 
saddle point will then be on the positive real z axis, at a value of z 
minimizing the function on the real axis (which is orthogonal to the 
integration path). 

One is then left with a real, positive integrand to be integrated with 
respect to U; it will be the maximizing value of U which is dominant. 

The dominant contribution to integral (32) is thus from real, positive 
values of U and z which respectively maximize and minimize the function 
J(Uz, Uz-1). This is just the assertion of the theorem. | 

A "sufficiently regular" ~b will be one for which this argument is 
justifiable, which will certainly be true if ~b is a product of finite powers of 
~1, ~2 and finite (positive or negative) powers of H(~t,  42). Since 

j k E(Njk) oc I(Ajk~l~k/H(~l,  ~2)) 

we deduce the following result from Theorem D4'. 
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T h e o r e m  D5. Suppose v = 1. Then in the thermodynamic limit 

E(Njk) ac Ajk({(  ~2 (41) 

consistently with (34). 

Expression (41) when normalized provides the distribution pj~ of the 
degree (j, k) of a randomly chosen node in the thermodynamic limit. 
Relation (30) will have the implication 

E(j - k) = 0 (42) 

5. CRITICALITY 

Just as for the directed case, supercriticality of the regime (the 
presence of a giant component) manifests itself when the square bracket in 
the representation 

J(~l, ~2) = min [0H({1, 42) -- ~c{~ 32 - P log 0] 
0 

no longer has a saddle point of the correct form. Specifically, suppose that 
(1(0), (2(0) constitute a max-rain point of the bracket with respect to 
(~1~2, ~/~2). Take 0 as independent parameter, with p related to it by 
p = OH (argument ((0) understood). As 0 increases from zero, so does p, 
and criticality is reached when either of O~i(0)/O0 (i = 1, 2) becomes infinite. 

T h e o r e m  D6. Suppose v = 1, and consider p increasing from zero. 
Then the regime is subcritical exactly so long as the matrix 

, 632H ~2H \ 
- p H - '  3{~ 2K--pH-'  a{, 3{2~ 

M = 632 H 02 H / (43) 

is nonsingular, i.e., as long as the inequality 

p2 ~2HaZH [ _ . _ ~ _ . . | /  ~2 H ,~2 
(44) 

holds., Evaluation at the saddle point ((1, ~2) of J is understood in all cases. 

ProoL We deduce from (38) that 

(</oo3 ,(ore<l) 
ag2/a0/= M- \a/4/aG/ 

whence the assertions follow. | 
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T h e o r e m  D7. The condition (44) for subcriticality can alter- 
natively be written 

[ E ( j 2 - j ) ] [ E ( k 2 - k ) ]  < [ E ( j k - j ) ]  2 (45) 

Proof .  This reformulation fo!lows easily from the form (41) of the 
unnormalized (j, k) distribution and relations (38). Relation (45) is the 
analogue of (18) for the undirected case. However, if there is still a 
branching process interpretation, it must be a strongly modified one. 

6. S O M E  P A R T I C U L A R  C A S E S  

One extreme case for the undirected version is what was termed the 
Poisson case in ref. 10: 

I+j= 

For this case all arcs (bonds) have the same configurational energy, and 
one finds from Theorem U5 that the critical density is 

P c  = ~cl~ 2 

A modified version of this is Stockmayer's f - f unc t iona l  case, for which 

for some positive integer f In this case all arcs again have the same 
configurational energy, but a node has just f "sites" to which an arc may 
attach. One finds that 

t o ( f - -  1 ) 

P c  = O z f ( f  _ 2)2 

The case at the opposite extreme to the Poisson is 

Hj = bid (46) 

when all nodes are required to have degree d exactly. Not  surprisingly, one 
finds [see (18)] that the process is subcritical at all densities if d =  0, 1; and 
supercritical at all densities if d = 2, 3, 4 ..... l. The case d = 2 is a transitional 
one on which we comment  at the end of the section. 

The directed version of the Poisson case would be that for which 
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and so 

H(4~, 42) = exp(r + r 

The stationary point ((1, ~2) of J ( ~ l ,  ~2) yielded by 

PCt=2K~2, Pr 

indeed has the saddle-point character required in Theorems D4 and D4'. 
Condition (43) yields the critical density 

K 
PC-- r162 

corresponding to that for the undirected Poisson case with r = ( r 1 6 2  1/2. 
The f-functional case could have several directed analogues: let us take 

the simplest, for which 

H _(TIV& 

That is, there are f l  "outgoing" attachment sites and f2 "incoming" sites, 
not mutually substitutable. We have then 

H(4t, ~2)= (1 + r 41)/~ (1 + q~2 42) f2 

It is useful to define the quantities 

Pi-- 
1 + CAi 

which for i equal to 1 and 2 are interpretable respectively as the propor- 
tions of outgoing and incoming sites which are occupied. Indeed, it follows 
from Theorem D5 that j, k follow independent binomial distributions with 
parameters (fl,  Pl) and (f2, P2), respectively. 

The stationarity conditions (38) for J become, in terms of the pi, 

2~cpl P2 
f~p l=  f2p2 p(blqk2qlq 2 (47) 

where qi = 1 - P i .  The subcriticality condition (45) becomes 

( A  - ~)(f2 - ~) p i p 2  < (1 - A  p l ) (1  - A  p~) (48) 

We can best express matters in terms of the single parameter 
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~ = f 2 P 2 ,  identifiable as the common value of E(j) and E(k). In 
terms of c~, relations (47) and (48) become, respectively, 

2~ce 
- ( f l  - ~ ) ( f 2  - ~ )  ( 4 9 )  p~,~2 

( f l  -- 1)(f2 -- 1) ~2 < f l f 2 (  1 _ 0~)2 (50) 

A s  p increases from zero, then so does ~, and by (50) criticality will be 
reached when 

O~ __ /  flf2 
1 - ~ ( A  - 1 ) ( f 2  - 1 )  

Inserting this determination of the critical ~ value into (49), we obtain, 
with some reduction, the determination of the critical density 

~c 2(1 + cl 6"2) 
PC = ~ l ~ 2 ( f l  - -  1)(f2 -- 1) (cl + c2) 2 (51) 

where 

xfff• ci= -- 1 

In the case f l  = fz = f expression (51 ) reduces to 

Pc-(~,~2(fl--l  )(f2-1 ) 

Finally, the directed analogue of the fixed-degree case (46) is 

{10 j=dl ,  k=d2 
Hjk = otherwise 

when all nodes are constrained to have degree (d~, d2) exactly. We have 
then 

J ( ~ l ,  ~2)  = const + p log(~a~ g2) - 2t<~142 

Now this expression will not have a saddle pojnt unless d l =  d2, which 
is indeed necessary if the balance conditions (30), (42) are to hold. 
However, with d~ = d 2 = d we are in the degenerate situation that J is a 
function of P =  r  alone. Since the matrix M is then trivially singular, 
conditions for criticality based on the first onset of singularity are uninfor- 
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mative. For  example, both sides of inequality (45) are equal to d2(d - 1) 2. 
To overcome this, we consider the analogue of J for two communicating 
replicas, when we would have 

J(~l,  r 4'1, ~ )  oc p log(pa+  Qa)_ to(P+ Q) 

where P =  ~1~2; Q = r We seek values of these arguments maximizing 
J, and find, for d =  0, 1, that J is maximized by 

pd 
P=Q-2~: 

but for d =  1, 2, 3 .... J is maximized by P = 0, Q = pd/~, or the permuted 
solution. This indicates that we are in the subcritical case for d <  1, the 
supercritical case for d >  1, and that the case d =  1 is transitional. 

In fact, the undirected case with d = 2 and the directed case with d =  1 
are identical, because in both cases the only components that can occur are 
simple loops of lengths R = 1, 2, 3,.... One finds from Theorem U2 or D3 
that 

W R 

R 

where w is a constant whose value becomes irrelevant once condition (11) 
is applied (ref. 9, p. 517). 

A closer analysis shows that with positive probability loops of size 
O(N) will occur, but that there will be more than one such loop. That 
is, there will be "giant components," but more than one single giant 
component. 
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